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LETTER TO THE EDITOR 

Monte Carlo simulation of a model of a surfactant 

D B Abrahamt and E R Smith 
Department of Mathematics, University of Melbourne, Parkville, Victoria, Australia, 3052 

Received 17 February 1981 

Abstract. A lattice gas model of a solution is described. Its Monte Carlo simulation shows 
surfactancy and strong evidence for a phase transition in the surface. 

In this Letter a model of a dilute solution is studied which can show high concentrations 
of solute at the surface in equilibrium with a very dilute bulk solution. Such a system is 
said to display surfactancy. In the model described here this results, broadly speaking, 
from enhanced interactions between solute molecules when they lie in the surface. This 
enhancement could arise, for instance, because the surrounding medium has different 
dielectric properties from the solvent itself. 

This raises the question whether enhanced surface interactions can alter the state of 
the surface of a solvent-solute system. It is known that increasing ferromagnetic bond 
strengths in the surface of a cubical Ising ferromagnet, or its lattice-gas equivalent, may 
induce the surface to undergo a phase transition to an ordered state at a temperature 
above the three-dimensional critical value (Binder and Hohenberg 1972, 1974). This 
result was obtained by series expansion techniques. There is also an exact result in this 
direction for the planar lattice (Abraham 1980). Below a two-component lattice-gas 
model will be developed along these lines. 

Consider a two-component lattice gas in three dimensions. On a simple cubic lattice 
A with unit edge length let a variable t ( x )  = 0, 1 , 2  be defined for each site x :  t ( x )  = 0 
denotes an empty cell centred on x ,  t ( x )  = 1 a cell occupied by a solvent molecule and 
t ( x )  = 2 a cell occupied by a solute molecule. Let a neighbouring pair of species i and j 
have an interaction energy U,, and define -pu,, =E,, .  Attractive interactions imply 
E,, S O .  Let the molecular species i = 1 , 2  have fugacities z ,  and define H, by z ,  = 
exp HI. It is convenient to define projectors P, (x )  onto species j at site x :  evidently 

Pl(X) = 2t(x)( l -  t ( x ) / 2 )  

P2(x) = t ( x ) ( t ( x )  - 1)/2. 

and 

Let us regard the Pi as components of a two-vector P and introduce similar matrix 
notations for Hi and Eij. The interaction energy of a configuration { t ( x ) } ,  multiplied by 
-p, is 

E = P(x)=EP(y) (2) 

t On leave from Oxford University. 
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where the sum is over nearest neighbour sites x and y ,  each pair being taken once. The 
grand canonical probability of { t ( x ) }  is 

~ ( { t } ;  A, Z, E )  = E(A, z, E)-’ exp ( H = P ( ~ )  + E  
X ) (3) 

where E is the grand canonical partition function, which normalises (3). One may think 
of (3) as describing a generalised three-component Potts model. In solution language, 
the case H2+ -CO describes a solvent with critical parameters Hl(c) = -2.66028 and 
El l (c )  = 0.88676 taken from Ising-model data (Domb 1972). 

0; the lattice has a 
surface at x3 = C .  Returning to (2), if x3 = y3  = 0,  then the interaction matrix E is 
replaced by E($) .  Take H1 = 0 and let EZ2 < Ell be chosen so that the lattice is mainly 
occupied by solvent molecules. Suppose EII(S) = E11 and E&) = E I Z .  Can E22(S) be 
chosen so that the surface layer is mainly occupied by solute molecules, even though 
such molecules are found infrequently in the bulk? Clearly the parameters in the 
problem can be selected so that such a state is stabilised energetically with respect to a 
ground state with all solvent molecules. For instance, take EZI, E 2 2  < El1 and E22(S) > 
E11(S) + (Ell - E21)/2. The question is then whether or not entropic considerations 
dominate energetic ones in determining the state of the surface and further, whether 
there is a phase transition for such a system in which the surface-segregated state 
becomes unstable. 

Next we give numerical evidence from a Monte-Carlo simulation of a finite lattice A 
of size 10 x 10 x 16 that as the ratio a = EZ2(S)/Ell(S) increases from unity there is a 
sudden increase in the fractional population of solute in the surface, denoted p2(0 ) ,  from 
essentially zero to slightly less than unity. If the bulk population of solute, denoted p2, is 
altered by varying H2 with Hz = H2(S) ,  it appears that p2(0 )  is a very strongly increasing 
function of p ~ .  Of course it is not possible to say conclusively whether a phase transition 
does occur from studies of a finite system. 

The Monte Carlo simulation of the l o x  10 x 16 Ising lattice used a Glauber 
dynamics algorithm. Periodic boundary conditions were applied in xl, x 2 .  The 
dynamics algorithm for one move was 

Now consider a lattice A,, the vertices x of which satisfy x3 

(i) select a lattice site x at random, which will be in a state t(x) = 0, 1 or 2, 
(ii) Select at random one of the other two states of the site: call this t ’ ( x ) ,  
(iii) Change t ( x )  to t’(x) with probability [1+ exp (PAE)]-’ where AE is the change 

in energy of the system when t(x) + t ’ ( x ) .  
The lattice contained 1600 sites and the simulation was divided into ‘time steps’ of 1600 
consecutive moves. Most simulation runs were composed of 200 successive time steps 
though some were 500,2000 or 10 000. Measurements reported are of averages of the 
system taken at the end of each time step. In all the simulations reported, EZ2 =;Ell 
and HI = 0. The other energies were parametrised by 

E z z ( S )  = aEi1 E12 =E12(S) = Y E l l .  (4) 

The choice of El = 0 means that the lattice was always almost filled with solvent with a 
very low concentration of solute and vacancies in the bulk of the lattice. In table 1 we 
list the values of PB and p ~ ( 0 )  measured in simulations at the given values of Ell, a and 
y. For all the results in table 1, H2 = 0. 

In figure 1 we plot smooth curves through the data points of p2(0)  as a function of a 
for the cases E11 = 0.9, y = 0.333, HZ = 0 and El1 = 0.9, y = 0.444, H2 = 0. Notice that 
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Table 1. Results of simulations for H2 = 0. 

0.555 0 1.08 
1.62 

1.17 
* 1.67 

1.17 
0'167 1.67 

1.17 
0'333 1.67 

1.04 0.675 0.148 * 1.48 

1.04 
0'296 1.48 

1.07 
1.47 
1.07 
1.47 

1.11 0.9 0.333 * 1.44 

1.11 
0'444 1.44 

1.17 1.2 0.333 * 1,42 

1.08 
1.33 

0.6 0 

0.75 0.267 * 

0.4 

0.5 

0.186 0.063 1.26 
0.792 0.060 1.80 

0.145 0.043 1.33 
0.889 0.042 1.83 
0.272 0.077 1.33 
0.874 0.078 1.83 
0.386 0.134 1.33 
0.850 0.129 1.83 

0.145 0.045 1.18 
0.856 0.047 1.63 
0.246 0.079 1.19 
0.786 0.080 1.63 

0.152 0.050 1.2 
0.859 0.049 1.6 
0.278 0.089 1.2 
0.832 0.091 1.6 

0.128 0.033 1.22 
0.908 0.035 1.55 
0.277 0.059 1.22 
0.888 0.062 1.55 

0.061 0.011 1.25 
0.979 0.010 1.50 
0.171 0.033 1.17 
0.788 0.034 1.42 

0.281 0.059 1.43 
0.910 0.064 1.98 

0.247 0.042 1.5 
0.947 0.041 
0.402 0.077 1.5 
0.935 0.078 2.0 
0.576 0.133 1.5 
0.923 0.135 

0.191 0.046 1.33 
0.927 0.043 1.78 
0.298 0.083 1.33 
0.903 0.081 

0.226 0.050 1.33 
0.932 0.049 
0.382 0.091 1.33 
0.900 0.091 

0.140 0.034 1.33 
0.953 0.035 
0.416 0.064 1.33 
0.946 0.062 

0.190 0.009 1.33 
0.965 0.009 
0.217 0.036 1.25 
0.960 0.032 

0.400 0.060 
0.943 0.064 

0.660 0.042 

0.701 0.076 
0.964 0.078 
0.703 0.131 

0.409 0.047 
0.959 0.045 
0.493 0.082 

0.555 0.049 

0.627 0.091 

0.484 0.035 

0.751 0.060 

0.320 0.010 

0.530 0.035 

1.0 1.5 
a 

Figure 1. Graphs of p z ( 0 )  against a for Ell =0.9, H2=0: - , y=o.333; ---, 
y = 0.444. 
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for the case y = 0.333, p2(0)  varies very sharply with a at a = 1.3 while when y increases 
to 0.444 this variation is much less sharp. This sharp variation indicates highly 
cooperative behaviour as a varies at small y while as y increases the evidence of 
cooperativity decreases. 

It is tempting to identify the behaviour of p2(0 )  as a varies for y = 0.333 as evidence 
of a surface phase transition. Entries in table 1 marked with an asterisk indicate that the 
maximum slope in curve of the p 2 ( 0 )  against (Y was greater than that found at Ell = 0.9, 
y = 0.444 and H2 = 0. 

An important question is the reliability of the mesurements made in the simulations, 
that is, how well does the finite lattice mimic an infinite system and how well has the 
simulation averaged over the phase space available to the system. It is difficult to judge 
these matters when there are no exact results available for the model as is the case here. 

On the point of system size, we refer to some recent simulations of surface 
phenomena in a two-dimensional system for which exact results were available (Abra- 
ham 1980, Abraham and Smith 1981). These, a 65 x 65  (4225 sites) system, gave 
excellent agreement with known exact results. The lattice used here was of the same 
order of magnitude (38%) as the two-dimensional one considered. 

On the other point we note the following. 
(i) 10 000 time step runs for a few points gave values of p 2 ( 0 )  not distinguishable on 

figure 1 from the curves given by more than one thickness of the lines drawn on the 
graphs. 

(ii) The average density of solute in the layer x 3  = i, p 2 ( i )  varied by less than 10% 
over the layers x3 = 4 - 13, 

(iii) The average density of species 1 in the layer x 3 = i ,  p l ( i )  was remarkably 
insensitive to i (variation of less than 1% over x 3  = 4 - 13). 

(iv) The simulations were done by starting at the highest (or lowest) value of a 
reported and decreasing (increasing) a,  starting a run at a given a from the last 
configuration of the run at the previous value of a.  For El1 = 0.6, y = 0 and y = 0.333 
and H2 = 0, the data represent two sets of runs, one with increasing a followed by one 
with decreasing a. No hysteresis effects were observed (again to the accuracy 
represented by the thickness of the lines in the graphs of figure 1). 

0 0 0 5  01 

Q, 

Figure 2. ( a )  Graph of p2(0)  against H2 for Ell = 0.9, y = 0.333: - , (Y = 1.444; ----, 
a = 1 . 2 7 8 ;  . . . . ,  a = l . l l l .  ( b )  Graph of p2(0) against p2El l=0 .9 ,  y=O.333 :  -, 
a=1 .444 ; - - - , a=1 .278 ;  . . . . ,  ( ~ = 1 . 1 1 1 .  
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We may conclude that the cooperative effects reported here were stable with regard 
to the number of time steps used and to whether CY was increasing or decreasing. The 
number of time steps used (generally 200) thus seems large enough to give reliable 
results for this system while remaining small enough for the simulations reported to 
have been possible. 

We now turn to the role of H2 which controls the bulk solute density p2. In figure 
2(a) we plot p2(0)  as a function of H2 for El1 = 0.9, y = 0.33 and CY = 1.444, 1.278 and 
1.11 1 and in figure 2(6) we plot p2(0 )  as a function of p2 for these values of Ell, y and U. 

For CY = 1.444 and 1.278, the system displays highly cooperative effects while coopera- 
tivity appears to have decreased considerably for a = 1.111. Note also that for 
CY = 1-11 1, the value of H2 required to increase p2(0 )  to 0.7 is about 0.5 (cf 0 or 0.1 for 
CY = 1.444 or 1.278). 
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